TxnSails: Achieving Serializable Transaction Scheduling

with Self-Adaptive Isolation Level Selection

Qiyu Zhuang', Wei Lu®, Shuang Liu®, Yuxing Chen#, Xinyue Shi®

Zhanhao Zhao#, Yipeng Sun?, Anqun Pan#, Xiaoyong Du’
TRenmin University of China tTencent Inc.

04/09/2025

Tencent

Outline

» Background

» System Overview
» Technique Details
» Evaluations

» Conclusion

Outline

» Background

» System Overview
» Technique Details
» Evaluations

» Conclusion

Background Tencent

> Applications rely databases to store and manage their data.

— g

— —
Serializable, Snapshot isolation, Read committed,
o O which isolation level should I choose ?
O y A

—_— /

Background Tencent

> Applications rely databases to store and manage their data.

— - -
Serializable, Snapshot isolation, Read committed,
o O which isolation level should I choose ?
O —_— /l*

Serializable ~ Snapshot Read
Isolation Committed
Anomaly ~t 4 —
less more

u Performance

Tencent

—_ >
I need both high performance and no data anomaly,
(:> what can I do without kernel modification :

O — e e

Background

Background

.
I need both high performance and no data anomaly,
what can I do without|kernel modification :

y A

—_— e
\J
Configure the database to a low isolation level.

Background
—_ >
I need both high performance and no data anomaly,
what can I do without kernel modification =
—— /l; >—

How to avoid data anomalies when the database
. . . . <
is configured to low isolation levels ?

Background

— g
I need both high performance and no data anomaly,
what can I do without kernel modificatioﬁjz::>_

S o

How to avoid data anomalies when the database
. . . . <
is configured to low isolation levels ?

|. Do concurrency control inside the application [,

[High Performance but unsafe, easy to write critical bugs!]

[1] Ad Hoc Transactions in Web Applications: The Good, the Bad, and the Ugly

Background

— e
I need both high performance and no data anomaly,
what can I do without kernel modificatioﬁjz::>_

S o

How to avoid data anomalies when the database

. . . . <
is configured to low isolation levels ?

|. Do concurrency control inside the application [,
II. Promote some specific reads to writes!23l,

[High Performance but overclaimed, prone to false positives]

[1] Ad Hoc Transactions in Web Applications: The Good, the Bad, and the Ugly
[2] Serializable Use of Read Committed Isolation Level
[3] Robustness against Read Committed for Transaction Templates

Challenges Tencent

Challenge1:

How to elevate low isolation levels to SER without additional writes ?

Challenges

Challenge1:

How to elevate low isolation levels to SER without additional writes ?

O Which low isolation level should I choose?
O .

)\/

Challenges

Challenge1:

How to elevate low isolation levels to SER without additional writes ?

Challenge2:

How to determine the optimal isolation level for specific workload ?

Challenges Tencent

Challenge1:
How to elevate low isolation levels to SER without additional writes ?

Challenge2:
How to determine the optimal isolation level for specific workload ?

Challenge3:

How to guarantee SER during the transition between isolation levels ?

Tencent

Background
Under SI, a dangerous structure is Under RC, a single RW-dependency,
defined as the RW-dependency chain, 7.5 7. is referred to as a dangerous
Data Anomaly W TW L)
Struct T; = T; — T}. In a data anomaly, at structure. In a data anomaly, at least
ructure least one dangerous structure exists, one dangerous structure exists, and T;
and T, commits before T; commits. commits before T; commits.
D . J \ - J
T™W . . ™W _TW
Vulnerable 1. The RW dependency T; — Ty in chain T; = T; — T; under Sl.
dependency 2. The single RW dependency T; — T; under RC.

4

,
—

Necessary A vulnerable dependency exists.
condition of 2. The dependency order between the two transactions in the
anomaly L vulnerable dependency is inconsistent with their commit order.

Outline

» Background

» System Overview
» Technique Details
» Evaluations

» Conclusion

System Overview

Tencent

TxnSails works in the middle tier between the application tier and database
tier, it comprises three main components: Analyzer, Executor, and Adapter.

params
Application ‘ Transactions 4mm | Transaction Templates
TxnSails Template interfaces
A L J
Executor - _ Analyzer
- Static vulnerable
Dependency Isolation Level dependencies
Detector Manager
Transaction Transition Samples:
Scheduler Governor - read / write set
I 3 Y
Optimal | Adapter §4.
isolation % — o
level e LN
v oo——»
\.-\/ i 5 -
SOLa Query e
QLs results Workload
Modeling Isolation Level Prediction
L 4

RDBMS

System Overview

TxnSails works in the middle tier between the application and database,
it comprises three main components: Analyzer, Executor, and Adapter.

X Analyzer

It builds the static dependency graph (SDG) for the
transaction templates and identifies all the static
vulnerable dependencies for each low isolation level.

Smallbank SDG

params
Application ‘ Transactions ‘ 4mm | Transaction Tcmplatcsl
TxnSails Template interfaces
L L
Executor -
D q Tsolation Level Static vulnerable Analyzer
ependency solation Leve dependencies
Detector Manager
Transaction Transition Samples:
Scheduler Governor - read / write set
I Y
Optimal Adapter §4.2
isolation Y S,
]EVE] {1-"::'\':1x\\ll'-,
O
b {
SOLs Query i
QLs results Workload
Modeling Isolation Level Prediction
3
RDBMS

System Overview

TxnSails works in the middle tier between the application and database,

it comprises three main components: Analyzer, Executor, and Adapter.
X Analyzer

X

It builds the static dependency graph (SDG) for the
transaction templates and identifies all the static
vulnerable dependencies for each low isolation level.

Executor

It ensures SER when transactions operate at a single
low isolation level or during the transition. Keep the
commit order consistent with the dependency.

param

5
Application ‘ Transactions 4mm | Transaction Tcmplatcsl
TxnSails Template interfaces
Y
Executor - . Analyzer
D 1 Tsolation Level Static vulnerable
ependency solation Leve dependencies
Detector Manager
Transaction Transition Samples:
Scheduler Governor - read / write set
b Y
Optimal | Adapter §4.2
isolation -8
level ..q-l'_’_{l-":'\o‘\\l"-,
¥ To——
SOLs Query i
QLs results Workload
Modeling Isolation Level Prediction

RDBMS

System Overview

TxnSails works in the middle tier between the application and database,
it comprises three main components: Analyzer, Executor, and Adapter.

X Analyzer

It builds the static dependency graph (SDG) for the
transaction templates and identifies all the static
vulnerable dependencies for each low isolation level.

Executor

It ensures SER when transactions operate at a single
low isolation level or during the transition. Keep the
commit order consistent with the dependency.

N Adaptor

It collects transactions and then employs a graph-
based model to predict the optimal isolation level.

X

param

5
Application ‘ Transactions 4mm | Transaction Tcmplatcsl
TxnSails Template interfaces
Y
Executor -
D q Tsolation Level Static vulnerable Analyzer
ependency solation Leve dependencies
Detector Manager
Transaction Transition Samples:
Scheduler Governor - read / write set
I] Y
Optimal | Adapter §4.
isolation Y SN
level) {1-":"\G~\\I"-,
s :fﬂ =
SOLs Query =
QLs results Workload
Modeling Isolation Level Prediction

RDBMS

Outline

» Background

» System Overview
» Technique Details
» Evaluations

» Conclusion

Technique Details

% Unified middle-tier concurrency control mechanism

TxnSails dynamically detects runtime vulnerable dependencies and schedules their commit order.
Specifically, it adds a validation phase in transaction lifecycle before these transactions can commit.

In the execution phase, TxnSails stores the
read/write data items in the thread-local buffer
that may induce the vulnerable dependencies;

In the validation phase, TxnSails acquires
validation locks for data items stored in the
buffer. Then, it detects dependencies among
them and aims to schedule the commit order
consistent with the identified dependency order;
In the commit phase, TxnSails applies
modifications to the database and subsequently
releases the validation locks.

Transaction Lifecycle (SI) |[] Detebase
W{x] C | operation
1 I .
T 47: | H | = 1 | Walidation
IE i
-~ | . . = i ;
: o Ll X TCHIP
R“;"’ b virile_sel £ i communication
R{Iﬂ] W{}rl} e |I:1-II:1L"I.]'|_,;5_r-:-
wa—| :]] | operation
| *a o —= e | o Tranmsaction
B e vread set < lifeaycle

o 005 0.0

Lease

fime mow

Validation Lock Table (VLT)
RDBMS . | SH 7) "

Technique Details

% Self-adaptive isolation level selection

TxnSails adopts transaction dependency graphs to capture workload features and adopts a graph
classification model to perform self-adaptive isolation level selection.

Graph construction

TxnSails proposes a graph-structured
workload model, where each transaction is
mapped to a vertex v;, and its feature
vector v; is generated by extracting the
number of data items in its read and write
set. For each edge (v;, v;), TxnSails
extracts the data dependency type and the
involved relations to generate its feature.

Graph embedding and isolation level prediction

The graph model comprises two parts. First, we use a
Graph Embedding Network to aggregate both vertex
and edge features, encoding the local structure and
attribute information of the graph. Second, we use a
Graph Classification Network that learns the mapping
from the embedded matrix to the optimal isolation
level and perform the graph classification to predict
the optimal isolation level.

Technique Details

9 Cross-isolation level validation mechanism

If the predicted optimal isolation level changes, TxnSails will adapt from the previous isolation level
1,14 10 the optimal isolation level I,,,,,. TxnSails employs a cross-isolation validation (ClIV) mechanism
that ensures serializability and allows for non-blocking transaction execution.

Cross-isolation

vulnerable w 1w | N
dependency T; — T; > Ty, where T; commits after the transition starts.

T
The cross-isolation vulnerable dependency is defined as T; = T, in chain

rw
For any cross-isolation vulnerable dependency T; — Ty, if T; commits

-&: Corollary . .
\be[ore T}, , the scheduling achieves SER.

Technique Details Tencent

9 Cross-isolation level validation mechanism

If the predicted optimal isolation level changes, TxnSails will adapt from the previous isolation level
1,14 10 the optimal isolation level I,,,,,. TxnSails employs a cross-isolation validation (ClIV) mechanism
that ensures serializability and allows for non-blocking transaction execution.

Cross-isolation

vulnerable w 1w | N
dependency T; — T; > Ty, where T; commits after the transition starts.

T
The cross-isolation vulnerable dependency is defined as T; = T, in chain

rw
For any cross-isolation vulnerable dependency T; — Ty, if T; commits

-&: Corollary . .
\be[ore T}, , the scheduling achieves SER.

Do middle-tier concurrency control to ensure the
consistent dependency order and commit order !

Outline

» Background

» System Overview
» Technique Details
» Evaluations

» Conclusion

Evaluations

sk Self-adaptive isolation level selection

We first evaluate selfadaptive isolation level selection by varying the workload every 10s
across six distinct scenarios. We sample the workload at 1-second intervals. The results
demonstrate that different isolation levels perform variably under different workloads:

v Sl performs well in low-skew scenarios PxnSails-RC SER IxnSails-Bayesian
(A’C’.E). . . . \r;\::\d-:llsls:i skew-1.3 (Tt:‘]::l:ll\’RllliL skew-1.3 | r\:]:‘](lll‘\l F: skew-1.1

v" SER is more suitable in h|gh-SkeW reads-90% reads-5% reads-95% | reads-90% reads-90% reads-90%
scenarios with little writes (D,F). Erviety o

v" RC excels in high skew scenarios with 0.5 0%
more writes (B). s 0.0

TxnSails can choose the optimal isolation oL - A G SRR

level across all tested scenarios. Timeline (s)

¥

I hroughput (K 1Xns/s)

Evaluations Tencent

sk Impact of templates percentages

In complex workloads like SmallBank and TPC-C, only certain queries lead to data
anomalies. This part compares different solutions by varying the percentage of critical
transaction templates.

As the ratio of Balance transaction S I -

increases, TxnSails achieves up to 6.2x ESSS RC+Promotion EEE Sl+Promotion T'xnSails
performance gain. As the ratio R ik M
of WriteCheck transactions increases, 100 Al o B g 0 b

75 . 130 b BH

TxnSails’'s advantage becomes more B BH Bf
pronounced as no extra WW conflicts ey i r lr l g
are introduced’ Outperforming up 1{0) 0 l;.li‘.“i-’_l_:..:::".’f-;li_;:”:':l{fbi :{S“I{ 0 Illfi)él?}tb}' :”” __“ J”
2. 3x the performance Of SER. Balance percentage WriteCheck percentage

i = B il B o)
50 ’ - o N BN N 20; ,
o] H = &= i 1 B

=y - : - —— &

4
N

l'hroughput (k Txns
)

.
.
|
.
3

Outline

» Background

» System Overview
» Technique Details
» Evaluations

> Conclusion

Conclusion Tencent

— N
I will choose TxnSails to manage database
isolation level.

— ‘/L

» TxnSails introduces a unified middle-tier validation method to
enforce the commit order consistent with the vulnerable
dependency order, ensuring serializability in single-isolation and
cross-isolation scenarios.

» TxnSails adopts a graph learned model to extract the runtime
workload characteristics and adaptively predict the optimal isolation
levels, achieving further performance improvement.

Personal site: https://qiyuzhuang.github.io/

|
Thanks! Email: gyzhuang@ruc.edu.cn

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

