
TxnSails: Achieving Serializable Transaction Scheduling

with Self-Adaptive Isolation Level Selection

Qiyu Zhuang†, Wei Lu†, Shuang Liu†, Yuxing Chen‡, Xinyue Shi†

 Zhanhao Zhao‡, Yipeng Sun†, Anqun Pan‡, Xiaoyong Du†

†Renmin University of China ‡Tencent Inc.

04/09/2025

Outline

➢ Background

➢ System Overview

➢ Technique Details

➢ Evaluations

➢ Conclusion

Outline

➢ Background

➢ System Overview

➢ Technique Details

➢ Evaluations

➢ Conclusion

Background

➢ Applications rely databases to store and manage their data.

Serializable, Snapshot isolation, Read committed,
which isolation level should I choose ?

Background

➢ Applications rely databases to store and manage their data.

Serializable, Snapshot isolation, Read committed,
which isolation level should I choose ?

Serializable Snapshot
Isolation

Read
Committed

less more

low high

Anomaly

Performance

Background

I need both high performance and no data anomaly,
what can I do without kernel modification ?

Background

I need both high performance and no data anomaly,
what can I do without kernel modification ?

Configure the database to a low isolation level.

Background

I need both high performance and no data anomaly,
what can I do without kernel modification ?

How to avoid data anomalies when the database

is configured to low isolation levels ?

Background

I need both high performance and no data anomaly,
what can I do without kernel modification ?

How to avoid data anomalies when the database

is configured to low isolation levels ?

I. Do concurrency control inside the application [1].

[1] Ad Hoc Transactions in Web Applications: The Good, the Bad, and the Ugly

High Performance but unsafe, easy to write critical bugs[1]

Background

I need both high performance and no data anomaly,
what can I do without kernel modification ?

How to avoid data anomalies when the database

is configured to low isolation levels ?

I. Do concurrency control inside the application [1].

II. Promote some specific reads to writes[2,3].

[1] Ad Hoc Transactions in Web Applications: The Good, the Bad, and the Ugly

[2] Serializable Use of Read Committed Isolation Level

[3] Robustness against Read Committed for Transaction Templates

High Performance but overclaimed, prone to false positives

Challenges

Challenge1:

How to elevate low isolation levels to SER without additional writes ?

Challenges

Which low isolation level should I choose?

Challenge1:

How to elevate low isolation levels to SER without additional writes ?

Challenges

Challenge1:

How to elevate low isolation levels to SER without additional writes ?

Challenge2:

How to determine the optimal isolation level for specific workload ?

Challenges

Challenge1:
How to elevate low isolation levels to SER without additional writes ?

Challenge2:
How to determine the optimal isolation level for specific workload ?

Challenge3:
How to guarantee SER during the transition between isolation levels ?

Background

Under SI, a dangerous structure is
defined as the RW-dependency chain,

𝑇𝑖

𝑟𝑤
𝑻𝒋

𝒓𝒘
𝑻𝒌. In a data anomaly, at

least one dangerous structure exists,
and 𝑻𝒌 ​commits before 𝑻𝒋 commits.

Under RC, a single RW-dependency,

𝑻𝒊

𝒓𝒘
𝑻𝒋, is referred to as a ​dangerous

structure. In a data anomaly, at least
one dangerous structure exists, and 𝑻𝒋

commits before 𝑻𝒊 commits.

1. A vulnerable dependency exists.
2. The dependency order between the two transactions in the

vulnerable dependency is inconsistent with their commit order.

1. The RW dependency 𝑇𝑗

𝑟𝑤
𝑇𝑘 in chain 𝑇𝑖

𝑟𝑤
𝑇𝑗

𝑟𝑤
𝑇𝑘 under SI.

2. The single RW dependency 𝑇𝑖

𝑟𝑤
𝑇𝑗 under RC.

Data Anomaly

Structure

Vulnerable
dependency

Necessary
condition of

anomaly

Outline

➢ Background

➢ System Overview

➢ Technique Details

➢ Evaluations

➢ Conclusion

System Overview

TxnSails works in the middle tier between the application tier and database
tier, it comprises three main components: Analyzer, Executor, and Adapter.

System Overview

TxnSails works in the middle tier between the application and database,
it comprises three main components: Analyzer, Executor, and Adapter.

Analyzer
It builds the static dependency graph (SDG) for the

transaction templates and identifies all the static

vulnerable dependencies for each low isolation level.

Smallbank SDG

System Overview

TxnSails works in the middle tier between the application and database,
it comprises three main components: Analyzer, Executor, and Adapter.

Analyzer
It builds the static dependency graph (SDG) for the

transaction templates and identifies all the static

vulnerable dependencies for each low isolation level.

Executor
It ensures SER when transactions operate at a single

low isolation level or during the transition. Keep the

commit order consistent with the dependency.

System Overview

TxnSails works in the middle tier between the application and database,
it comprises three main components: Analyzer, Executor, and Adapter.

Analyzer
It builds the static dependency graph (SDG) for the

transaction templates and identifies all the static

vulnerable dependencies for each low isolation level.

Executor
It ensures SER when transactions operate at a single

low isolation level or during the transition. Keep the

commit order consistent with the dependency.

Adaptor
It collects transactions and then employs a graph-

based model to predict the optimal isolation level.

Outline

➢ Background

➢ System Overview

➢ Technique Details

➢ Evaluations

➢ Conclusion

Technique Details

Unified middle-tier concurrency control mechanism

TxnSails dynamically detects runtime vulnerable dependencies and schedules their commit order.
Specifically, it adds a validation phase in transaction lifecycle before these transactions can commit.

I. In the execution phase, TxnSails stores the
read/write data items in the thread-local buffer
that may induce the vulnerable dependencies;

II. In the validation phase, TxnSails acquires
validation locks for data items stored in the
buffer. Then, it detects dependencies among
them and aims to schedule the commit order
consistent with the identified dependency order;

III. In the commit phase, TxnSails applies
modifications to the database and subsequently
releases the validation locks.

Technique Details

Self-adaptive isolation level selection

TxnSails adopts transaction dependency graphs to capture workload features and adopts a graph
classification model to perform self-adaptive isolation level selection.

Graph construction Graph embedding and isolation level prediction
TxnSails proposes a graph-structured

workload model, where each transaction is

mapped to a vertex 𝑣𝑖 , and its feature

vector 𝑣𝑖 is generated by extracting the

number of data items in its read and write
set. For each edge (𝑣𝑖 , 𝑣𝑗), TxnSails

extracts the data dependency type and the

involved relations to generate its feature.

The graph model comprises two parts. First, we use a

Graph Embedding Network to aggregate both vertex

and edge features, encoding the local structure and

attribute information of the graph. Second, we use a

Graph Classification Network that learns the mapping
from the embedded matrix to the optimal isolation

level and perform the graph classification to predict

the optimal isolation level.

Technique Details

Cross-isolation level validation mechanism

If the predicted optimal isolation level changes, TxnSails will adapt from the previous isolation level

𝐼𝑜𝑙𝑑 to the optimal isolation level 𝐼𝑛𝑒𝑤. TxnSails employs a cross-isolation validation (CIV) mechanism

that ensures serializability and allows for non-blocking transaction execution.

For any cross-isolation vulnerable dependency 𝑇𝑗

𝑟𝑤
 𝑇𝑘, if 𝑇𝑗 commits

before 𝑇𝑘 , the scheduling achieves SER.
Corollary

The cross-isolation vulnerable dependency is defined as 𝑇𝑗

𝑟𝑤
 𝑇𝑘 in chain

𝑇𝑖

𝑟𝑤
 𝑇𝑗

𝑟𝑤
 𝑇𝑘, where 𝑇𝑗 commits after the transition starts.

Cross-isolation
vulnerable

dependency

Technique Details

Cross-isolation level validation mechanism

If the predicted optimal isolation level changes, TxnSails will adapt from the previous isolation level

𝐼𝑜𝑙𝑑 to the optimal isolation level 𝐼𝑛𝑒𝑤. TxnSails employs a cross-isolation validation (CIV) mechanism

that ensures serializability and allows for non-blocking transaction execution.

For any cross-isolation vulnerable dependency 𝑇𝑗

𝑟𝑤
 𝑇𝑘, if 𝑇𝑗 commits

before 𝑇𝑘 , the scheduling achieves SER.
Corollary

The cross-isolation vulnerable dependency is defined as 𝑇𝑗

𝑟𝑤
 𝑇𝑘 in chain

𝑇𝑖

𝑟𝑤
 𝑇𝑗

𝑟𝑤
 𝑇𝑘, where 𝑇𝑗 commits after the transition starts.

Cross-isolation
vulnerable

dependency

Do middle-tier concurrency control to ensure the

consistent dependency order and commit order !

Outline

➢ Background

➢ System Overview

➢ Technique Details

➢ Evaluations

➢ Conclusion

Evaluations

Self-adaptive isolation level selection

We first evaluate selfadaptive isolation level selection by varying the workload every 10s
across six distinct scenarios. We sample the workload at 1-second intervals. The results
demonstrate that different isolation levels perform variably under different workloads:

✓ SI performs well in low-skew scenarios
(A,C,E).

✓ SER is more suitable in high-skew
scenarios with little writes (D,F).

✓ RC excels in high skew scenarios with
more writes (B).

TxnSails can choose the optimal isolation
level across all tested scenarios.

Evaluations

Impact of templates percentages

In complex workloads like SmallBank and TPC-C, only certain queries lead to data

anomalies. This part compares different solutions by varying the percentage of critical

transaction templates.

As the ratio of Balance transaction
increases, TxnSails achieves up to 6.2×
performance gain. As the ratio
of WriteCheck transactions increases,
TxnSails’s advantage becomes more
pronounced as no extra WW conflicts
are introduced, outperforming up to
2.3× the performance of SER.

Outline

➢ Background

➢ System Overview

➢ Technique Details

➢ Evaluations

➢ Conclusion

Conclusion

Thanks!
Personal site: https://qiyuzhuang.github.io/

Email: qyzhuang@ruc.edu.cn

I will choose TxnSails to manage database
isolation level.

➢ TxnSails introduces a unified middle-tier validation method to
enforce the commit order consistent with the vulnerable
dependency order, ensuring serializability in single-isolation and
cross-isolation scenarios.

➢ TxnSails adopts a graph learned model to extract the runtime
workload characteristics and adaptively predict the optimal isolation
levels, achieving further performance improvement.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

