TxnSails: Achieving Serializable Transaction Scheduling with
Self-Adaptive Isolation Level Selection

Qiyu Zhuang', Wei Lut, Shuang Liut, Yuxing Chen?*, Xinyue Shit Tencent i&iH
) PR AR K AF Zhanhao Zhaof, Yipeng Sun', Anqun Pan#*, Xiaoyong Dut 2 BT =

RENMIN UNIVERSITY OF CHINA

TRenmin University of China +Tencent Inc.
4 N
. Example
1 o In'l.'r‘OdUC'l.'IOn In the execution phase, after the [~ -)
RDBMS execution @, T,,. stores the T“:‘f““““ Litecycle (S) - ([pouaeee
Serializable isolation level is regarded as the gold standard for transaction processing due to its data item x in its vread set and T;, r, —), 1. e | validasion
ability to prevent all anomalies. However, it also incurs expensive coordination overhead. stores x in its vwrite_set @. In the RWZ o erite set < |l T
Many studies have explored achieving SER by operating at lower isolation levels while modifying validation phase of T,,, it acquires the R(x0) W(y,) i C | memory
specific query patterns within a workload. This approach is driven by two key reasons. First, shared validation lock on x @ and e el] - N
some RDBMSs cannot strictly guarantee SER, requiring application logic modifications to enforce retrieves the latest version of x from O > wead g | lifecycle
it. Second, RDBMSs typically offer better performance at lower isolation levels due to their more either VLT or the RDBMS @. While in L 005 0o
relaxed ordering requirements. , o the validation phase of Ty, it requests — ___ Validation Lock Table (VLT)
Current approaches: e WW the exclusive validation lock on x and S I B e e e T
1. Build a static dependency graph iS. blocke_d until 7, relgases the lock.
from transaction templates. Wowwh Y Finally, in the commit phase, T | Fig.3 Transaction processing in TxnSails
2. Configure the database to a low AR ‘?{‘_"f; releases the validation lock on x @.
isolation level and then identify Ay # Self-adaptive isolation level selection
anomaly structures. W Y Wweww . .
- o TxnSails adopts transaction dependency graphs to capture workload features and adopts a
3. Eliminate anomaly structures by Ww h classificat del t : f-adantive isolation level select
modifying application logic, e.g.. | N graph classification model to perform self-adaptive isolation level selection.
) i (b) Modified dependency graph (RC) .
promoting reads to writes for s o e Graph construction
certain SQL statements. e B S SRR e ' _ ion i
\ Fig.1 Static Dependency Graph over SmallBank TxnSails proposes a graph-structured workload model, where each transaction is mapped to a

vertex v;, and its feature vector v; is generated by extracting the number of data items in its read
Problems & Chauenges and write set. For each edge (v;, v;), TxnSails extracts the data dependency type and the

@ Static modification of query patterns is inefficient. Designing an approach that elevates involved relations to generate its feature.
various isolation levels to SER without introducing additional writes is a complex task.

Graph embedding and isolation level prediction

The graph model comprises two parts. First, we use a Graph Embedding Network to learn and
aggregate both vertex and edge features, producing node-level embedded matrix that encodes
the local structure and attribute information of the graph. Second, to predict the optimal isolation

@ Current approaches fail to address the key trade-off between the performance gains and the
additional overhead under lower isolation levels. Determining the optimal isolation level
requires accurately modeling the trade-offs is challenging.

W As workloads evolve, the optimal isolation level may adapt over time, making it essential to level, we use a Graph Classification Network that learns the mapping from the embedded matrix
design an efficient and reliable mechanism for transitioninqg between isolation levels. to perform the end-to-end graph classification to predict the optimal isolation level.
e e . % Cross-isolation level validation mechanism
Preliminaries . - o o
. — YR If the predicted optimal isolation level changes, TxnSails will adapt from the previous isolation
Static vulnerable | The static vulnerable dependency is defined as J; — Jj in chain J; — J; — Jj level 1,;,; to the optimal isolation level I,,,,,. TxnSails employs a cross-isolation validation (CIV)
dependency under ST, and T, v 7: under RC, respectively. mechanism that ensures serializability and allows for non-blocking transaction execution.
Vulnerable o o Tw Crosls-isolbaltion The cross-1solation vulnerable dependency is defined as T; = T;, m chan
. . | . - _ vulnerable
dependency The Vulnefﬂi}ble dependency 1s defined as T; — Ty in chain T; = T; = T, under dependency T, v T ™ Ty, where T; commits after the transition starts.
(Runtime) SI, and T; — T; under RC, respectively.)
- N\
rw
N 8- Corollary For any cross-isolation vulnerable dependency T; — Ty, if T; commits

For any vulnerable dependency T; = T;, it T; commits before T;, then
(the scheduling achieves SER.

-®: Theorem (before Ty , the scheduling achieves SER.

Transition procedure

- |. TxnSails blocks new transactions from entering the validation phase until all transactions that
2 o OverV1 ew have entered the validation phase before the transition commit or abort.
()

. _ . , L _ o _ ll. Validation locks are required acc- R(xp) R(y) W) c

TxnSails works in the middle tier between the application tier and database tier, it comprises ording to the stricter locking meth- T, - | 1 1>

I " . “"o'l'- £ o "-""-""-““"-'l,:"“-“““"“““"“““"“ .
thlfe main components: Analyzer, Executor, and Adapter. od of either I_,, or I, to ensure ! We) C .. -
X Analyzer that all cross-isolation vulnerable ' ey \ :

. : . W W R C
It builds the static dependency graph for the transaction templates and identifies all the static dependencies can be detected. T, o = {EI}|—| {}h}|_|:|_|: -
vulnerable dependencies for each low isolation level. Ill. After acquiring validation locks, Isolation level transition (§)' ~ """ 77777777 B
A Executor transaction first detects vulnerable Motadata | % (0o O (L2} | Vel Ty _
. I x: . Y. s Zo — i Alidale data ety
p, _ p— _ dependencies in its original isola- E::},__m RS A e g
It ensures SER when transactions Application Transactions 4=mm | Transaction Templates tion level. Then, it detects cross- {lastestVersion} i_ ,-:;;_{1_}: y: E{}___._l_}f;_:{g_}_i Validate data item x o
operate at a single low isolation level isolation vulnerable dependencies T —— [_’mm';:mf“;mfﬂ"m —
or durlng the trans'tlon Isolatlon Level TxnSails Tﬂmpfamiﬂmrfacﬂs by Checkmg Whether 9 Commltted ' lransaction il transaction ross-1solation validation
Manager stores the static vulnerable Executor . N I transaction modifies its read set. L F|g4 Cross-isolation validation y
dependencies. Before any transaction Do) (ol Tocg) | Static vulnerable HayzEr . . —
T starts, it identifies whether involves Detoctor Manager dependencies .$. Once all transactions executed under /,;; are committed or aborted, the transition
any static vulnerable dependencies. M Trmsaction | Tremsifion | Samples: ~ stage ends. Then, transactions do not need to undergo the cross-isolation validation.
Dependency Detector monitors the Scheduler Governor - read / write set R
read and write set, detecting the 3 - 4. EvaLuatlons
runtime vulnerable dependencies. Optimal | Adapter §42 o000
Transaction Scheduler guarantees the ol IR > oy ST :
. gua level | ¢a ™, N, sk Self-adaptive isolation level selection

consistent between commit order and Query e S\ o) | — | | |
dependency order. SQLs results Workload We first evaluate selfadaptive isolation level selection by varying the workload every 10s across
During the isolation level transition, S— [solation Level Prediction six distinct scenarios. The experimental results are illustrated in Fig. 5.

o L 4 7 N\
Transition GO.VernOr follows 2 .neW RDBMS We Sample the workload at 1-second —e— TxnSails-RC SER TxnSails-Bayesian
corollary, which extends the single Fia.2 Overview of TxnSails intervals. The results demonstrate o~ TxnSails-SI -+ TxnSails-Rule —+— TxnSails
|SO|at|On Ievel Theorem' g that diﬁ:erent iSOIation Ievels perform Q A: skeW-O.lE B: skew-l.SE C: skew-0.7: D: skew-1.3; E: skew—0.95 F: skew-1.1
ﬁ(Adaptor Variably Under different WorklOadS: SI 560- reads-90% Ereads—5/o Ereads—95A) reads-90% : reads-90% Ereads—9OA)

. . . - . erforms well in low-skew scenarios | < | iy) | 1oL]
It samples the real-time transactions and collects their characteristic. Then, it employs a graph- (pA C.E). SER is more suitable in high 5 45| 100 10 10heed
based model to predict the optimal isolation level. o . 1 . J 530, 102 me Shood | eaiesesdy OFT"Y
skew scenarios with little writes (D,F). 2 00 rssecesy L essnsan o
. RC excels in high skew scenarios | £ i N\ Y ; s
3. TEChnOLOgy DEtal LS with more writes (B). TxnSails can 0 0 20 30 40 50 60
choose the optimal isolation level Timeline (s)
% Unified middle-tier concurrency control mechanism across all tested scenarios. . Fig.5 Workload shifting - YCSB)

TxnSails introduces a middle-tier concurrency control algorithm, which dynamically validates sk Impact of templates percentages
runtime dependencies and schedules their commit order. In particular, it focuses exclusively on
vulnerable dependencies identified by the Analyzer and employs a lightweight validation
mechanism to further mitigate overhead.

In complex workloads like SmallBank and TPC-C, only certain transaction templates lead to data
anomalies, so modifying these templates can ensure serializability under low isolation levels.
This part compares different solutions by varying the percentage of critical transaction templates.

Transaction lifecycle As the ratio of Balance transactions [e RCIELM b i A
|. In the execution phase, TxnSails establishes a database connection with a specific isolation increases, performance of all solutions RC4Promotion E=S SI+Promotion TxnSails
level, which is not adjusted until the transaction is committed or aborted. Following the improves. TxnSails transitions to Sl in %125_ S | L
RDBMS transaction execution, TxnSails stores the read/write data items in the thread-local these workloads and achieves up to ool Bl 40 BE ﬂ:} i
buffer that may induce the vulnerable dependencies; 6.2x performance gain. As the ratio | < 4 gk %f ol BHBE
lI. In the validation phase, TxnSails acquires validation locks for data items stored in the buffer. of WriteCheck transactions increases, = 50| : BH BH Bl 20! 1 Ef
Then, it detects the dependencies among them and aims to schedule the commit order the advantage of TxnSails becomes | & 25J®EH§£H££ QEE;EQ 10} f R
consistent with the identified dependency order; more pronounced as no extra WW | = om0 00— 000 50 50 a0 o0
lll. In the commit phase, TxnSails applies modifications to the database and subsequently conflicts are introduced, outperforming Balance percentage WriteCheck percentage
releases the validation locks. up to 2.3x the performance of SER. _ Fig.7 Impact of templates percentage - Smallbank
\— 2 /

No.2499 O https.//github.com/dbiir/TxnSailsServer qyzhuang @ruc.edu.cn @ 51st International Conference on Very Large Data Bases, London

	Slide 1

