
1.Introduction

2.Overview

3.Technology Details

4.Evaluations

Fig.1 Static Dependency Graph over SmallBank

Problems & Challenges

Serializable isolation level is regarded as the gold standard for transaction processing due to its

ability to prevent all anomalies. However, it also incurs expensive coordination overhead.

Many studies have explored achieving SER by operating at lower isolation levels while modifying

specific query patterns within a workload. This approach is driven by two key reasons. First,

some RDBMSs cannot strictly guarantee SER, requiring application logic modifications to enforce

it. Second, RDBMSs typically offer better performance at lower isolation levels due to their more

relaxed ordering requirements.

Static modification of query patterns is inefficient. Designing an approach that elevates

various isolation levels to SER without introducing additional writes is a complex task.

Preliminaries

Current approaches:

1. Build a static dependency graph

from transaction templates.

2. Configure the database to a low

isolation level and then identify

anomaly structures.

3. Eliminate anomaly structures by

modifying application logic, e.g.,

promoting reads to writes for

certain SQL statements.

Current approaches fail to address the key trade-off between the performance gains and the

additional overhead under lower isolation levels. Determining the optimal isolation level

requires accurately modeling the trade-offs is challenging.

As workloads evolve, the optimal isolation level may adapt over time, making it essential to

design an efficient and reliable mechanism for transitioning between isolation levels.

For any vulnerable dependency 𝑇𝑖
𝑟𝑤
𝑇𝑗, if 𝑇𝑖 commits before 𝑇𝑗, then

the scheduling achieves SER.

The static vulnerable dependency is defined as 𝒯𝑗
𝑟𝑤

𝒯𝑘 in chain 𝒯𝑖
𝑟𝑤

𝒯𝑗
𝑟𝑤

𝒯𝑘

under SI, and 𝒯𝑖
𝑟𝑤

𝒯𝑗 under RC, respectively.

Static vulnerable

dependency

The vulnerable dependency is defined as 𝑇𝑗
𝑟𝑤

𝑇𝑘 in chain 𝑇𝑖
𝑟𝑤

𝑇𝑗
𝑟𝑤

𝑇𝑘 under

SI, and 𝑇𝑖
𝑟𝑤

𝑇𝑗 under RC, respectively.

Vulnerable

dependency

(Runtime)

Theorem

Fig.2 Overview of TxnSails

TxnSails works in the middle tier between the application tier and database tier, it comprises

three main components: Analyzer, Executor, and Adapter.

Analyzer

Executor

Adaptor

It builds the static dependency graph for the transaction templates and identifies all the static

vulnerable dependencies for each low isolation level.

It ensures SER when transactions

operate at a single low isolation level

or during the transition. Isolation Level

Manager stores the static vulnerable

dependencies. Before any transaction

T starts, it identifies whether involves

any static vulnerable dependencies.

Dependency Detector monitors the

read and write set, detecting the

runtime vulnerable dependencies.

Transaction Scheduler guarantees the

consistent between commit order and

dependency order.

During the isolation level transition,

Transition Governor follows a new

corollary, which extends the single

isolation level Theorem.

It samples the real-time transactions and collects their characteristic. Then, it employs a graph-

based model to predict the optimal isolation level.

Unified middle-tier concurrency control mechanism

Fig.3 Transaction processing in TxnSails

Self-adaptive isolation level selection

Cross-isolation level validation mechanism

Fig.4 Cross-isolation validation

Fig.5 Workload shifting - YCSB

Fig.7 Impact of templates percentage - Smallbank

Self-adaptive isolation level selection

TxnSails introduces a middle-tier concurrency control algorithm, which dynamically validates

runtime dependencies and schedules their commit order. In particular, it focuses exclusively on

vulnerable dependencies identified by the Analyzer and employs a lightweight validation

mechanism to further mitigate overhead.

We first evaluate selfadaptive isolation level selection by varying the workload every 10s across

six distinct scenarios. The experimental results are illustrated in Fig. 5.

We sample the workload at 1-second

intervals. The results demonstrate

that different isolation levels perform

variably under different workloads: SI

performs well in low-skew scenarios

(A,C,E). SER is more suitable in high-

skew scenarios with little writes (D,F).

RC excels in high skew scenarios

with more writes (B). TxnSails can

choose the optimal isolation level

across all tested scenarios.

Impact of templates percentages

In complex workloads like SmallBank and TPC-C, only certain transaction templates lead to data

anomalies, so modifying these templates can ensure serializability under low isolation levels.

This part compares different solutions by varying the percentage of critical transaction templates.

As the ratio of Balance transactions

increases, performance of all solutions

improves. TxnSails transitions to SI in

these workloads and achieves up to

6.2× performance gain. As the ratio

of WriteCheck transactions increases,

the advantage of TxnSails becomes

more pronounced as no extra WW

conflicts are introduced, outperforming

up to 2.3× the performance of SER.

Transaction lifecycle
I. In the execution phase, TxnSails establishes a database connection with a specific isolation

level, which is not adjusted until the transaction is committed or aborted. Following the

RDBMS transaction execution, TxnSails stores the read/write data items in the thread-local

buffer that may induce the vulnerable dependencies;

II. In the validation phase, TxnSails acquires validation locks for data items stored in the buffer.

Then, it detects the dependencies among them and aims to schedule the commit order

consistent with the identified dependency order;

III. In the commit phase, TxnSails applies modifications to the database and subsequently

releases the validation locks.

Example
In the execution phase, after the

RDBMS execution ❶, 𝑇𝑤𝑐 stores the

data item x in its vread_set and 𝑇𝑡𝑠
stores x in its vwrite_set ❷. In the

validation phase of 𝑇𝑤𝑐, it acquires the

shared validation lock on x ❸ and

retrieves the latest version of x from

either VLT or the RDBMS ❹. While in

the validation phase of 𝑇𝑡𝑠, it requests

the exclusive validation lock on x and

is blocked until 𝑇𝑤𝑐 releases the lock.

Finally, in the commit phase, 𝑇𝑤𝑐
releases the validation lock on x ❺.

TxnSails adopts transaction dependency graphs to capture workload features and adopts a

graph classification model to perform self-adaptive isolation level selection.

Graph construction

Graph embedding and isolation level prediction

TxnSails proposes a graph-structured workload model, where each transaction is mapped to a

vertex 𝑣𝑖, and its feature vector 𝑣𝑖 is generated by extracting the number of data items in its read
and write set. For each edge (𝑣𝑖, 𝑣𝑗), TxnSails extracts the data dependency type and the

involved relations to generate its feature.

The graph model comprises two parts. First, we use a Graph Embedding Network to learn and

aggregate both vertex and edge features, producing node-level embedded matrix that encodes

the local structure and attribute information of the graph. Second, to predict the optimal isolation

level, we use a Graph Classification Network that learns the mapping from the embedded matrix

to perform the end-to-end graph classification to predict the optimal isolation level.

If the predicted optimal isolation level changes, TxnSails will adapt from the previous isolation

level 𝐼𝑜𝑙𝑑 to the optimal isolation level 𝐼𝑛𝑒𝑤. TxnSails employs a cross-isolation validation (CIV)

mechanism that ensures serializability and allows for non-blocking transaction execution.

The cross-isolation vulnerable dependency is defined as 𝑇𝑗
𝑟𝑤

𝑇𝑘 in chain

𝑇𝑖
𝑟𝑤

𝑇𝑗
𝑟𝑤

𝑇𝑘, where 𝑇𝑗 commits after the transition starts.

Cross-isolation

vulnerable

dependency

For any cross-isolation vulnerable dependency 𝑇𝑗
𝑟𝑤

𝑇𝑘, if 𝑇𝑗 commits

before 𝑇𝑘 , the scheduling achieves SER.
Corollary

Transition procedure
I. TxnSails blocks new transactions from entering the validation phase until all transactions that

have entered the validation phase before the transition commit or abort.

II. Validation locks are required acc-

ording to the stricter locking meth-

od of either 𝐼𝑜𝑙𝑑 or 𝐼𝑛𝑒𝑤 to ensure

that all cross-isolation vulnerable

dependencies can be detected.

III. After acquiring validation locks,

transaction first detects vulnerable

dependencies in its original isola-

tion level. Then, it detects cross-

isolation vulnerable dependencies

by checking whether a committed

transaction modifies its read set.

Once all transactions executed under 𝐼𝑜𝑙𝑑 are committed or aborted, the transition
stage ends. Then, transactions do not need to undergo the cross-isolation validation.

	Slide 1

